Collecting and Analyzing Social Media Data

Montreal Methods Workshop

Alexandra Siegel

March 4, 2021

Assistant Professor, University of Colorado Boulder
Non-Resident Fellow, Brookings
Faculty Affiliate, Stanford Immigration Policy Lab
Faculty Affiliate, NYU Center for Social Media and Politics
Why use social media data to study politics?

- Real-time, scalable, measures of political behavior
- Elites, everyday citizens, extremists, media etc. on same platform
- Access to politically sensitive content and hard to reach populations
Why use social media data to study politics?

- Real-time, scalable, measures of political behavior
Why use social media data to study politics?

- Real-time, scalable, measures of political behavior
- Elites, everyday citizens, extremists, media etc. on same platform
Why use social media data to study politics?

- Real-time, scalable, measures of political behavior
- Elites, everyday citizens, extremists, media etc. on same platform
- Access to politically sensitive content and hard to reach populations
What types of data can we collect?

- Twitter
- Facebook
- Youtube
- Instagram
- Reddit
- Tiktok

- APIs and Terms of Service
- Available Metadata

- Static vs. Ongoing collections
What types of data can we collect?

- Twitter, Facebook, Youtube, Instagram, Reddit, Tiktok
What types of data can we collect?

- Twitter, Facebook, Youtube, Instagram, Reddit, Tiktok
- APIs and Terms of Service
What types of data can we collect?

- Twitter, Facebook, Youtube, Instagram, Reddit, Tiktok
- APIs and Terms of Service
- Available Metadata
What types of data can we collect?

- Twitter, Facebook, Youtube, Instagram, Reddit, Tiktok
- APIs and Terms of Service
- Available Metadata
- Static vs. Ongoing collections
Twitter: Social Scientists’ Favorite Platform

Collecting Data through traditional APIs
- Academic Research API
- Accessing Historical Data with Gnip
- Rehydrating Tweets
- Scraping Tweets

Twitter API Examples:

```json
{
  "created_at": "Wed Nov 07 04:16:18 +0000 2012",
  "id": 266031293945503744,
  "text": "Four more years. http://t.co/bAJE6Vom",
  "source": "web",
  "user": {
    "id": 813286,
    "name": "Barack Obama",
    "screen_name": "BarackObama",
    "location": "Washington, DC",
    "description": "This account is run by Organizing Tweets from the President are signed -bo.",
    "url": "http://t.co/8aJ56Jcemr",
    "protected": false,
    "followers_count": 54873124,
    "friends_count": 654580,
    "listed_count": 202495,
    "created_at": "Mon Mar 05 22:08:25 +0000 2007",
    "time_zone": "Eastern Time (US & Canada)",
    "statuses_count": 10687,
    "lang": "en"
  },
  "coordinates": null,
  "retweet_count": 756411,
  "favorite_count": 288867,
  "lang": "en"
}
```
Twitter: Social Scientists’ Favorite Platform

● Collecting Data through traditional APIs

```json
{
  "created_at": "Wed Nov 07 04:16:18 +0000 2012",
  "id": 266031293945503744,
  "text": "Four more years. http://t.co/bAJE6Vom",
  "source": "web",
  "user": {
    "id": 813286,
    "name": "Barack Obama",
    "screen_name": "BarackObama",
    "location": "Washington, DC",
    "description": "This account is run by Organizing Tweets from the President are signed -bo.",
    "url": "http://t.co/8aJ56Jcemr",
    "protected": false,
    "followers_count": 54873124,
    "friends_count": 654580,
    "listed_count": 202495,
    "created_at": "Mon Mar 05 22:08:25 +0000 2007",
    "time_zone": "Eastern Time (US & Canada)",
    "statuses_count": 10677,
    "lang": "en"
  },
  "coordinates": null,
  "retweeted": false,
  "retweet_count": 756411,
  "favorite_count": 288867,
  "lang": "en"
}
```
Twitter: Social Scientists’ Favorite Platform

- Collecting Data through traditional APIs
- Academic Research API

```json
{
  "created_at": "Wed Nov 07 04:16:18 +0000 2012",
  "id": 266031293945503744,
  "text": "Four more years. http://t.co/bAJE6Vom",
  "source": "web",
  "user": {
    "id": 813286,
    "name": "Barack Obama",
    "screen_name": "BarackObama",
    "location": "Washington, DC",
    "description": "This account is run by Organizing Tweets from the President are signed -bo."
  },
  "url": "http://t.co/8aJ56Jcemr",
  "protected": false,
  "followers_count": 54873124,
  "friends_count": 654580,
  "listed_count": 202495,
  "created_at": "Mon Mar 05 22:08:25 +0000 2007",
  "time_zone": "Eastern Time (US & Canada)",
  "statuses_count": 10687,
  "lang": "en"
}
```
Twitter: Social Scientists’ Favorite Platform

- Collecting Data through traditional APIs ▶️ Link
- Academic Research API ▶️ Link
- Accessing Historical Data with Gnip ▶️ Link

```
{ "created_at": "Wed Nov  7 04:16:18 +0000 2012", 
  "id": 26603129394503744, 
  "text": "Four more years. http://t.co/bAE6Vom", 
  "source": "web", 
  "user": { 
    "id": 813286, 
    "name": "Barack Obama", 
    "screen_name": "BarackObama", 
    "location": "Washington, DC", 
    "description": "This account is run by Organizing Tweets from the President are signed -bo.", 
    "url": "http://t.co/8aJ56Jcemr", 
    "protected": false, 
    "followers_count": 54873124, 
    "friends_count": 654580, 
    "listed_count": 202495, 
    "created_at": "Mon Mar  5 22:08:25 +0000 2007", 
    "time_zone": "Eastern Time (US & Canada)", 
    "statuses_count": 10687, 
    "lang": "en" }, 
  "coordinates": null, 
  "retweet_count": 756411, 
  "favorite_count": 288867, 
  "lang": "en" }
```
Twitter: Social Scientists’ Favorite Platform

- Collecting Data through traditional APIs ▶ Link
- Academic Research API ▶ Link
- Accessing Historical Data with Gnip ▶ Link
- Rehydrating Tweets ▶ Link

```json
{
  "created_at": "Wed Nov 07 04:16:18 +0000 2012",
  "id": 266031293945503744,
  "text": "Four more years. http://t.co/bAJE6Vom",
  "source": "web",
  "user": {
    "id": 813286,
    "name": "Barack Obama",
    "screen_name": "BarackObama",
    "location": "Washington, DC",
    "description": "This account is run by Organizing Tweets from the President are signed -bo.",
    "url": "http://t.co/8aJ56Jcemr",
    "protected": false,
    "followers_count": 54873124,
    "friends_count": 654580,
    "listed_count": 202495,
    "created_at": "Mon Mar 05 22:08:25 +0000 2007",
    "time_zone": "Eastern Time (US & Canada)",
    "statuses_count": 10687,
    "lang": "en"
  },
  "coordinates": null,
  "retweet_count": 756411,
  "favorite_count": 288867,
  "lang": "en"
}
```
Twitter: Social Scientists’ Favorite Platform

- Collecting Data through traditional APIs ➤ Link
- Academic Research API ➤ Link
- Accessing Historical Data with Gnip ➤ Link
- Rehydrating Tweets ➤ Link
- Scraping Tweets ➤ Link

```json
{ "created_at": "Wed Nov 07 04:16:18 +0000 2012", "id": 266031293945503744, "text": "Four more years. http://t.co/bAJE6Vom", "source": "web", "user": { "id": 813286, "name": "Barack Obama", "screen_name": "BarackObama", "location": "Washington, DC", "description": "This account is run by Organizing Tweets from the President are signed -bo. ", "url": "http://t.co/8aJ56Jcemr", "protected": false, "followers_count": 54873124, "friends_count": 654580, "listed_count": 202495, "created_at": "Mon Mar 05 22:08:25 +0000 2007", "time_zone": "Eastern Time (US & Canada)", "statuses_count": 10687, "lang": "en" }, "coordinates": null, "retweeted": false, "retweet_count": 756411, "favorite_count": 288867, "lang": "en" }
```
Facebook: Challenges and Opportunities for Research

• Collecting Public Page Data with Crowdtangle
• Accessing Data through Social Science One
• Using Facebook Ads for Academic Research
Facebook: Challenges and Opportunities for Research

- Collecting Public Page Data with Crowdtangle
- Accessing Data through Social Science One
- Using Facebook Ads for Academic Research
Facebook: Challenges and Opportunities for Research

- Collecting Public Page Data with Crowdtangle
- Accessing Data through Social Science One
Facebook: Challenges and Opportunities for Research

- Collecting Public Page Data with Crowdtangle
- Accessing Data through Social Science One
- Using Facebook Ads for Academic Research
Youtube: An Underutilized Resource

```json
{
"kind": "youtube#caption",
"etag": "etag",
"id": "string",
"snippet": {
  "videoId": "string",
  "lastUpdated": "datetime",
  "trackKind": "string",
  "language": "string",
  "name": "string",
  "audioTrackType": "string",
  "isCC": boolean,
  "isLarge": boolean,
  "isEasyReader": boolean,
  "isDraft": boolean,
  "isAutoSynced": boolean,
  "status": "string",
  "failureReason": "string"
}
}
```
Youtube: An Underutilized Resource

- Incredibly generous API

```json
{
  "kind": "youtube#caption",
  "etag": "etag",
  "id": "string",
  "snippet": {
    "videoId": "string",
    "lastUpdated": "datetime",
    "trackKind": "string",
    "language": "string",
    "name": "string",
    "audioTrackType": "string",
    "isCC": "boolean",
    "isLarge": "boolean",
    "isEasyReader": "boolean",
    "isDraft": "boolean",
    "isAutoSynced": "boolean",
    "status": "string",
    "failureReason": "string"
  }
}
```
Youtube: An Underutilized Resource

- Incredibly generous API

- Channel, Video, Metadata (including comments) & a computer generated TRANSCRIPT (!) in any language

```json
{
    "kind": "youtube#caption",
    "etag": "etag",
    "id": "string",
    "snippet": {
        "videoId": "string",
        "lastUpdated": "datetime",
        "trackKind": "string",
        "language": "string",
        "name": "string",
        "audioTrackType": "string",
        "isCC": "boolean",
        "isLarge": "boolean",
        "isEasyReader": "boolean",
        "isDraft": "boolean",
        "isAutoSynced": "boolean",
        "status": "string",
        "failureReason": "string"
    }
}
```
Instagram: There’s politics here too!
Instagram: There’s politics here too!

- API is increasingly restricted
Instagram: There’s politics here too!

- API is increasingly restricted
- BUT we can data from public accounts

Default: {username}
Options:
{username}: Scraped user
{shortcode}: Post shortcode (profile_pic and story are empty)
{urlname}: Original file name from url.
{mediatype}: The type of media being downloaded.
{datetime}: Date and time of upload. (Format: 20180101 01h01m01s)
{date}: Date of upload. (Format: 20180101)
{year}: Year of upload. (Format: 2018)
{month}: Month of upload. (Format: 01-12)
{day}: Day of upload. (Format: 01-31)
{h}: Hour of upload. (Format: 00-23h)
{m}: Minute of upload. (Format: 00-59m)
{s}: Second of upload. (Format: 00-59s)
Reddit: Naturally Annotated Political Texts
Reddit: Naturally Annotated Political Texts

- Easiest to collect with Google Big Query
Reddit: Naturally Annotated Political Texts

- Easiest to collect with Google Big Query
- Can query by subreddit, time, keywords etc.
TikTok:
TikTok:

- TikTok API

[Link]
TikTok:

- TikTok API [Link]
- Query by user, hashtags, trending etc.
What can we do with social media data?

- Text/Image/Video as data
- Network analysis
- Spatial analysis
- Time series analysis

Graphs:
- Daily Proportion of Immigration Tweets
 - Year: 2014, 2016, 2018
 - Position: exclusive, inclusive
 - Republican and Democrat graphs showing trends over the years.

Images:
- A map of the United States with immigration tweet data visualized.
- A network graph illustrating connections between entities.
What can we do with social media data?

- Text/Image/Video as data

![Network diagram](image)

![Map of the United States](image)

![Line graphs showing daily proportion of immigration tweets](image)

Position: exclusive, inclusive
What can we do with social media data?

- Text/Image/Video as data
- Network analysis
What can we do with social media data?

- Text/Image/Video as data
- Network analysis
- Spatial analysis
What can we do with social media data?

- Text/Image/Video as data
- Network analysis
- Spatial analysis
- Time series analysis
Popular Approaches to Text Analysis for Social Media Data

Supervised Approaches
Supervised Approaches

- Dictionary-based methods
Supervised Approaches

- **Dictionary-based methods**
- **Training classifiers** on human coded or naturally annotated data
Popular Approaches to Text Analysis for Social Media Data

Supervised Approaches

- **Dictionary-based methods**
- Training **classifiers** on human coded or naturally annotated data
- **Semantic similarity** measures (e.g., using fasttext, but also cosine similarity etc.)

Unsupervised Approaches
Popular Approaches to Text Analysis for Social Media Data

Supervised Approaches

- Dictionary-based methods
- Training classifiers on human coded or naturally annotated data
- Semantic similarity measures (e.g., using fasttext, but also cosine similarity etc.)

Unsupervised Approaches

- LDA & Structural topic models (but watch out for short texts!)
Popular Approaches to Text Analysis for Social Media Data

Supervised Approaches

- Dictionary-based methods
- Training classifiers on human coded or naturally annotated data
- Semantic similarity measures (e.g., using fasttext, but also cosine similarity etc.)

Unsupervised Approaches

- LDA & Structural topic models (but watch out for short texts!)
- Neural networks (including word2vec)
Hate speech seeps into U.S. mainstream amid bitter campaign

By Alexis Okeowo November 17, 2016

Donald Trump and the Escalation of Hate

A number of civil-rights organizations have spoken out about the rise of hate speech and violent threats by groups and individuals who support the presumptive Republican presidential nominee.

By Karin Kamp June 15, 2016

'Massive rise' in hate speech on Twitter during presidential election

Jessica Gaynmen, USA TODAY Published 5:00 p.m. ET Oct. 21, 2016 | Updated 7:00 p.m. ET Oct. 23, 2016
How do we measure online hate speech?

- On Twitter
- Machine-Learning-Augmented-Dictionary Method
- Leveraging Data from Hateful Sub-Reddits
- Political Datasets & Random Sample of American Twitter Users (June 2015 - June 2017)
How do we measure online hate speech?

- On Twitter
How do we measure online hate speech?

- On Twitter
- Machine-Learning-Augmented-Dictionary Method
How do we measure online hate speech?

- On Twitter
- Machine-Learning-Augmented-Dictionary Method
- Leveraging Data from Hateful Sub-Reddits
How do we measure online hate speech?

- On Twitter
- Machine-Learning-Augmented-Dictionary Method
- Leveraging Data from Hateful Sub-Reddits
- Political Datasets & Random Sample of American Twitter Users (June 2015 - June 2017)
1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL). (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. (e.g. pizza, newspaper, soak, taco) (538 terms)

3. Add common Twitter specific terms using word2vec dictionary (+ 500 terms)

Problems with Dictionary Methods:

- Term can be part of a Twitter handle: @angrybitch
- Dictionary terms can be parts of other words: spicy
- Dictionary terms can be homonyms: “a chink in his armor”

Examples of Anti-Hate Speech that include dictionary terms:

- Already been flicked off and called a wetback and it’s only been 3 days... thanks Donald trump
- RT @ShaunKing: This just happened in Indiana. “F*** you n**** bitch. Trump is going to deport you back to Africa.” Day 1 of Donald
1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)
1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco) → (538 terms)
1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco)→ (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)
Dictionary-based Hate Speech Detection on Twitter

1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco)→ (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:
Dictionary-based Hate Speech Detection on Twitter

1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco) → (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:
- Term can be part of a Twitter handle: @angrybitch
1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco)→ (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:
- Term can be part of a Twitter handle: @angrybitch
- Dictionary terms can be parts of other words: spicy
Dictionary-based Hate Speech Detection on Twitter

1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco) → (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:

- Term can be part of a Twitter handle: @angrybitch
- Dictionary terms can be parts of other words: spicy
- Dictionary terms can be homonyms: “a chink in his armor”
Dictionary-based Hate Speech Detection on Twitter

1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco)→ (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:
- Term can be part of a Twitter handle: @angrybitch
- Dictionary terms can be parts of other words: spicy
- Dictionary terms can be homonyms: “a chink in his armor”
- Examples of Anti-Hate Speech that include dictionary terms:
Dictionary-based Hate Speech Detection on Twitter

1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco) → (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:

- Term can be part of a Twitter handle: @angrybitch
- Dictionary terms can be parts of other words: spicy
- Dictionary terms can be homonyms: “a chink in his armor”

- Examples of Anti-Hate Speech that include dictionary terms:
 - Already been flicked off and called a wetback and it’s only been 3 days... thanks Donald trump
Dictionary-based Hate Speech Detection on Twitter

1. Create dictionaries of slurs and terms from existing dictionaries of hate speech and white nationalist rhetoric (Hatebase, Racial Slur Database, ADL) → (4,477 terms, including variations)

2. Remove terms that are primarily not used as hate speech in a random sample of our Political Twitter dataset. → (e.g. pizza, newspaper, soak, taco)→ (538 terms)

3. Add common Twitter specific terms using word2vec dictionary → (+ 500 terms)

Problems with Dictionary Methods:

- Term can be part of a Twitter handle: @angrybitch
- Dictionary terms can be parts of other words: spicy
- Dictionary terms can be homonyms: “a chink in his armor”

- Examples of Anti-Hate Speech that include dictionary terms:
 - Already been flicked off and called a wetback and it’s only been 3 days... thanks Donald trump
 - RT @ShaunKing: This just happened in Indiana. ”F*** you n**** bitch. Trump is going to deport you back to Africa.” Day 1 of Donald
Supervised Classification (Dictionary-based Method):

- Trained undergraduates and crowd-sourced coders on Crowdflower coded a random sample of 25,000 tweets (each tweet coded by 3 people) containing hate speech OR white nationalist rhetoric terms identified using our dictionary method.
Supervised Classification (Dictionary-based Method):

- Trained undergraduates and crowd-sourced coders on Crowdflower coded a random sample of 25,000 tweets (each tweet coded by 3 people) containing hate speech OR white nationalist rhetoric terms identified using our dictionary method.

 - Does this tweet contain hate speech? (yes or no)
 - Does this tweet contain white nationalist rhetoric? (yes or no)
 - Instructions contained detailed definitions and examples.
 - Test questions were used to weed out ineffective coders.
Supervised Classification (Dictionary-based Method):

- According to human coders, fewer than half of the tweets identified by the dictionary method in our random sample contained hate speech or white nationalist language.
Supervised Classification (Dictionary-based Method):

- According to human coders, fewer than half of the tweets identified by the dictionary method in our random sample contained hate speech or white nationalist language.

- Trained two Naive Bayes classifiers (a hate speech and a white nationalist rhetoric classifier).
Supervised Classification (Dictionary-based Method):

- According to human coders, fewer than half of the tweets identified by the dictionary method in our random sample contained hate speech or white nationalist language.

- Trained two Naive Bayes classifiers (a hate speech and a white nationalist rhetoric classifier).

- We measure the popularity of hate speech and white nationalist rhetoric (WNR) as:
 - The daily proportion of tweets containing hate speech or WNR in each of our datasets.
 - The daily proportion of unique users tweeting hate speech or WNR in each of our datasets.
Method II: Bag of Communities Approach

- Concern: are we missing other kinds of hate speech?
Method II: Bag of Communities Approach

- Concern: are we missing other kinds of hate speech?

- Idea: Find a place with known hate speech, then compare daily tweets with that speech
Method II: Bag of Communities Approach

- Concern: are we missing other kinds of hate speech?

- Idea: Find a place with known hate speech, then compare daily tweets with that speech

- Concept: Measure the average predicted probability that tweets are classified as belonging to a corpus of real-world hate speech.
Method II: Bag of Communities Approach

• 1) Download Reddit comments, remove comments with negative scores, and preprocess data.
Method II: Bag of Communities Approach

- 1) Download Reddit comments, remove comments with negative scores, and preprocess data.
- 2) Train supervised classifier (Fasttext) to predict which subreddit each comment was posted in.
Method II: Bag of Communities Approach

• 1) Download Reddit comments, remove comments with negative scores, and preprocess data.

• 2) Train supervised classifier (Fasttext) to predict which subreddit each comment was posted in.

• 3) Use subreddit embeddings from Step 2 to categorize subreddits into groups.

• 4) Train supervised classifier (Fasttext) to predict which group of subreddits each comment was posted in.

• 5) Apply trained classifier from Step 4 on Twitter data.

• 6) Calculate daily average predicted probability that tweets are classified as belonging to a group of alt-right subreddits.
Method II: Bag of Communities Approach

1) Download Reddit comments, remove comments with negative scores, and preprocess data.

2) Train supervised classifier (Fasttext) to predict which subreddit each comment was posted in.

3) Use subreddit embeddings from Step 2 to categorize subreddits into groups.

4) Train supervised classifier (Fasttext) to predict which group of subreddits each comment was posted in.

5) Apply trained classifier from Step 4 on Twitter data.

6) Calculate daily average predicted probability that tweets are classified as belonging to a group of alt-right subreddits.
Method II: Bag of Communities Approach

• 1) Download Reddit comments, remove comments with negative scores, and preprocess data.

• 2) Train supervised classifier (Fasttext) to predict which subreddit each comment was posted in.

• 3) Use subreddit embeddings from Step 2 to categorize subreddits into groups.

• 4) Train supervised classifier (Fasttext) to predict which group of subreddits each comment was posted in.

• 5) Apply trained classifier from Step 4 on Twitter data.
Method II: Bag of Communities Approach

1) Download Reddit comments, remove comments with negative scores, and preprocess data.

2) Train supervised classifier (Fasttext) to predict which subreddit each comment was posted in.

3) Use subreddit embeddings from Step 2 to categorize subreddits into groups.

4) Train supervised classifier (Fasttext) to predict which group of subreddits each comment was posted in.

5) Apply trained classifier from Step 4 on Twitter data.

6) Calculate daily average predicted probability that tweets are classified as belonging to a group of alt-right subreddits.
Validation of Method II: Hierarchical Clustering

Figure 1: Validity Check: Hierarchical Clustering of Subreddits
Accounts classified as **Sport**:

- **FC Barcelona**
 - @FCBarcelona

- **New York Yankees**
 - @Yankees

- **FC Zenit in English**
 - @fczenit_en
Validation of Method II: Classifying Twitter Accounts

Examples of accounts classified as **Anti-Trump**:

- The New York Times
 - @nytimes
- SPLC
 - @splcenter
- Nancy Pelosi
 - @NancyPelosi
- Judd Legum
 - @JuddLegum
- John McCain
 - @SenJohnMcCain
- Joshua Tucker
 - @j_a_tucker
Validation of Method II: Classifying Twitter Accounts

Accounts classified as Alt-right:

- Richard Spencer
 @RichardBSpencer
- Jared Taylor
 @jartaylor
- National Worldview
 @Mathiasian
- New Alternative Right
- Alternative Right
 @NewAltRight
- American Renaissance
 @AmRenaissance
- RAMZPAUL
 @ramzpaul
What can we learn from Twitter data?

Monthly Proportion of Classified Tweets Containing Hatespeech

- **Data Set**
 - Clinton
 - Trump
 - Random Sample

Proportion of Tweets

Date

What can we learn from Twitter data?

Misogynistic Language (Classified Tweets)

Daily Proportion of Classified Tweets

Date

Election Day
What can we learn from Twitter data?
What can we learn from Twitter data?

Anti-Muslim Language (Classified Tweets)
What can we learn from Twitter data?

Anti-Semitic Language (Classified Tweets)

Date

Election Day
Dictionary vs. Subreddit Analysis
So what does this tell us about analyzing social media data?

• Social media data are really big!
• Are optimized for search
• Need for more systematic approaches to measuring online behavior
• Multiple methods & data sources & iterative validation increase our confidence that we're measuring what we think we are
• Even better, combine offline and online measures!
So what does this tell us about analyzing social media data?

- Social media data...
So what does this tell us about analyzing social media data?

- Social media data...
 - are really big!
So what does this tell us about analyzing social media data?

- Social media data...
 - are really big!
 - are optimized for search
So what does this tell us about analyzing social media data?

- Social media data...
 - are really big!
 - are optimized for search

- Need for more systematic approaches to measuring online behavior
So what does this tell us about analyzing social media data?

- Social media data...
 - are really big!
 - are optimized for search

- Need for more systematic approaches to measuring online behavior

- Multiple methods & data sources & iterative validation increase our confidence that we’re measuring what we think we are
So what does this tell us about analyzing social media data?

- Social media data...
 - are really big!
 - are optimized for search

- Need for more **systematic approaches** to measuring online behavior

- Multiple methods & data sources & iterative validation increase our confidence that we’re measuring what we think we are

- Even better, combine offline and online measures!
Some Takeaways

- Social media data opens up new measurement opportunities for social scientists.

• But key challenges remain:
 - Representativeness
 - Reproducing
 - Temporal Validity

- Researchers are at the mercy of the platforms.
- Like any data source there are pros and cons and approaches are constantly evolving.
Some Takeaways

• Social media data opens up new measurement opportunities for social scientists.

• But key challenges remain:
Some Takeaways

• Social media data opens up new measurement opportunities for social scientists.

• But key challenges remain:

 • Representativeness
Some Takeaways

- Social media data opens up new measurement opportunities for social scientists.

- But key challenges remain:
 - Representativeness
 - Reproducability
Some Takeaways

- Social media data opens up new measurement opportunities for social scientists.

- But key challenges remain:
 - Representativeness
 - Reproducability
 - Temporal Validity
Some Takeaways

- Social media data opens up new measurement opportunities for social scientists.

- But key challenges remain:
 - Representativeness
 - Reproducability
 - Temporal Validity
 - Researchers are at the mercy of the platforms
Some Takeaways

• Social media data opens up new measurement opportunities for social scientists.

• But key challenges remain:

 • Representativeness

 • Reproducability

 • Temporal Validity

 • Researchers are at the mercy of the platforms

• Like any data source there are pros and cons and approaches are constantly evolving...
Thank You!

alexandra.siegel@colorado.edu
@aasiegel
alexandra-siegel.com